GDNF and NGF reverse changes in repriming of TTX-sensitive Na(+) currents following axotomy of dorsal root ganglion neurons.

نویسندگان

  • Andreas Leffler
  • Theodore R Cummins
  • Sulayman D Dib-Hajj
  • William N Hormuzdiar
  • Joel A Black
  • Stephen G Waxman
چکیده

Uninjured C-type rat dorsal root ganglion (DRG) neurons predominantly express slowly inactivating TTX-resistant (TTX-R) and slowly repriming TTX-sensitive (TTX-S) Na(+) currents. After peripheral axotomy, TTX-R current density is reduced and rapidly repriming TTX-S currents emerge and predominate. The change in TTX-S repriming kinetics is paralleled by an increase in the level of transcripts and protein for the Na(v)1.3 sodium channel alpha-subunit, which is known to exhibit rapid repriming. Changes in Na(+) current profile and kinetics in DRG neurons may substantially alter neuronal excitability and could contribute to some states of chronic pain associated with injury of sensory neurons. In the present study, we asked whether glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF), which have been shown to prevent some axotomy-induced changes such as the loss of TTX-R Na(+) current expression in DRG neurons, can ameliorate the axotomy-induced change in TTX-S Na(+) current repriming kinetics. We show that intrathecally administered GDNF and NGF, delivered individually, can partially reverse the effect of axotomy on the repriming kinetics of TTX-S Na(+) currents. When GDNF and NGF were co-administered, the repriming kinetics were fully rescued. We observed parallel effects of GDNF and NGF on the Na(v)1.3 sodium channel transcript levels in axotomized DRG. Both GDNF and NGF were able to partially reverse the axotomy-induced increase in Na(v)1.3 mRNA, with GDNF plus NGF producing the largest effect. Our data indicate that both GDNF and NGF can partially reverse an important effect of axotomy on the electrogenic properties of sensory neurons and that their effect is additive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0304-3959(99)00169-4

Previous studies have shown that transection of the sciatic nerve induces dramatic changes in sodium currents of axotomized dorsal root ganglion (DRG) neurons, which are paralleled by signi®cant changes in the levels of transcripts of several sodium channels expressed in these neurons. Sodium currents that are resistant to tetrodotoxin (TTX-R) and the transcripts of two TTX-R sodium channels ar...

متن کامل

Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons.

Dorsal root ganglion (DRG) neurons produce multiple sodium currents, including several different TTX-sensitive (TTX-S) currents and TTX-resistant (TTX-R) currents, which are produced by distinct sodium channels. We previously demonstrated that, after sciatic nerve transection, the levels of SNS and NaN sodium channel alpha-subunit transcripts and protein in small (18-30 micrometer diameter) DRG...

متن کامل

Changes in Na(+) channel currents of rat dorsal root ganglion neurons following axotomy and axotomy-induced autotomy.

Section of rat sciatic nerve (axotomy) increases the excitability of neurons in the L(4)-L(5) dorsal root ganglia (DRG). These changes are more pronounced in animals that exhibit a self-mutilatory behavior known as autotomy. We used whole cell recording to examine changes in the tetrodotoxin-sensitive (TTX-S) and the tetrodotoxin-resistant (TTX-R) components of sodium channel currents (I(Na)) t...

متن کامل

Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo.

Small (18-25 microm diam) dorsal root ganglion (DRG) neurons are known to express high levels of tetrodotoxin-resistant (TTX-R) sodium current and the mRNA for the alpha-SNS sodium channel, which encodes a TTX-R channel when expressed in oocytes. These neurons also preferentially express the high affinity receptor for nerve growth factor (NGF), TrkA. Levels of TTX-R sodium current and of alpha-...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 2  شماره 

صفحات  -

تاریخ انتشار 2002